Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 651: 794-804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572615

RESUMO

Exploiting clean, highly efficient energy storage and conversion device like Zn-air battery is of significance for alleviating the energy and environmental crises of this society. Metal organic coordination polymers/frameworks have been regarded as ideal templates to synthesize non-noble metal catalysts for a long time. However, the high density of metal nodes inevitably leads to the heavy aggregation of metal nanoparticles during thermolysis transformation process, which greatly hinders the maximizing of electrochemical performances. Herein, covalent organic framework (COF) has been employed to anchor the quantificational Fe ions (COF-Fe) and then confined into the macropores of g-C3N4 to improve the dispersion of metal active sites and avoid severe aggregation during high temperature pyrolysis. After calcination, the metal nanoparticles highly dispersed Fe-CFN catalysts can be obtained. The optimal Fe-CFN-800 catalysts exhibit excellent ORR and OER performances with the potential difference between ORR and OER of merely 0.723 V. Moreover, experimental way and DFT theoretical calculations are also employed to disclose the reaction mechanism. Finally, the all-solid-state and aqueous Zn-air batteries assembled with the optimized Fe-CFN-800 as cathode present excellent performances with high peak power density, flexible rate performance, strong discharge stability and long-term charge-discharge cycling performance.

2.
Glob Chang Biol ; 29(12): 3476-3488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931867

RESUMO

Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.


Assuntos
Ecossistema , Micorrizas , Raízes de Plantas/metabolismo , Secas , Florestas , Micorrizas/metabolismo , Árvores , Exsudatos e Transudatos/metabolismo , Compostos Orgânicos/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Solo/química , Açúcares/análise , Açúcares/metabolismo , Exsudatos de Plantas/análise , Exsudatos de Plantas/metabolismo
3.
J Colloid Interface Sci ; 629(Pt A): 73-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36054990

RESUMO

Constructing highly efficient cathode catalysts is of significance for the practical application of Zn-air batteries, while the accessibility of electrons and electrolyte to catalytic active sites is essential for the electrocatalytic processes of Zn-air battery. Herein, we established a novel strategy to construct CoNi@CN composites with open structure through template-modulating thermal transformation of Co-NRs@Co-Ni-MOF. The internal elongated Co-NRs will convert into carbon nanotubes to create an open channel to the metal active sites needed for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, thereby increasing the O-containing intermediates transmission and boosting the ORR/OER performances. Surprisingly, the optimal Co3Ni1@CN-900 composites deliver excellent ORR/OER activities, affording a high half-wave potential (E1/2) of 0.869 V for ORR and a low overpotential of 366 mV for OER, as well as a narrow potential gap between ORR and OER of 0.727 V. Most impressively, the optimal Co3Ni1@CN-900 based aqueous and solid-state Zn-air batteries achieve outstanding battery properties with high OCVs, enhanced peak power densities and specific capacities, and excellent long-term charge-discharge stabilities. Meanwhile, the Co3Ni1@CN-900 based ZAB also exhibits an impressive practicality.

4.
Sci Total Environ ; 863: 160775, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36509268

RESUMO

Elevated atmospheric CO2 concentrations [CO2] potentially alter carbon (C) and phosphorus (P) cycles in terrestrial ecosystems. Although numerous field experiments and a few meta-analyses have been conducted, it is still largely unclear how the P cycle affects plant biomass responses under elevated [CO2] globally. Here, we conducted a global synthesis by analyzing 111 studies on the responses of above- and belowground P cycling to elevated [CO2], to examine how changes in the P cycle affect the plant biomass response to elevated [CO2]. Our results show that elevated [CO2] significantly increased plant aboveground biomass (+13 %), stem biomass (+4 %), leaf biomass (+11 %), belowground biomass (+12 %), and the root: shoot ratio (+7 %). Effects of elevated [CO2] on aboveground biomass, belowground biomass, and root: shoot ratio were best explained by plant P uptake. In addition, elevated [CO2]-induced changes in the aboveground P pool, leaf P pool, and leaf P concentration were modulated by ecological drivers, such as ΔCO2, experimental duration, and aridity index. Our findings highlight the importance of plant P uptake for both above- and belowground plant biomass responses under elevated [CO2], which should be considered in future biosphere models to improve predictions of terrestrial carbon-climate feedbacks.


Assuntos
Biomassa , Dióxido de Carbono , Plantas , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Fósforo/metabolismo , Plantas/metabolismo , Solo/química
5.
ACS Appl Mater Interfaces ; 14(34): 38677-38688, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977406

RESUMO

Constructing highly efficient cathode catalysts for Zn-air batteries (ZABs) is an attractive research topic in sustainable energy storage area. Herein, the rare-earth metal oxide modification strategy has been proposed to construct the highly efficient and ultra-stable catalysts for ZABs. Accordingly, a graphene oxide-doped carbon-supported Eu2O3-modified Fe3O4 (Fe3O4/Eu2O3@NCG) catalyst is developed with layered Fe-Eu-MOF/GO as a precursor. Detailed characterization reveals that Fe3O4/Eu2O3@NCG possesses unique structural properties, including carbon-metal-carbon configuration, plentiful oxygen vacancies, and variable metal-active sites, which endows the catalyst with strong conductivity, high activity, and ultra-long stability. The optimal Fe3O4/Eu2O3@NCG catalyst exhibits an outstanding electrochemical performance, and the potential difference (Egap) between oxygen reduction reaction and oxygen evolution reaction is merely 0.68 V at 0.1 M KOH condition. Moreover, density functional theory calculations are employed to investigate the reaction mechanism and the synergetic effect between Fe and Eu atoms. Most importantly, the Fe3O4/Eu2O3@NCG-based aqueous ZAB delivers a high power density (218 mW/cm2), specific capacity (854 mA h/g@5 mA/cm2), and an impressive ultra-long cycle property with more than 1000 h (>6000 cycles) charge-discharge cycle life. In addition, the Fe3O4/Eu2O3@NCG-based all-solid-state ZAB also exhibits an outstanding performance, achieving >460 h cycle life (>2760 cycles) and strong practical application capability.

6.
J Colloid Interface Sci ; 625: 555-564, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35749850

RESUMO

The fabrication of efficient bi-functional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) applied in energy storage and conversion devices like Zn-air batteries to solve the growing energy and environmental crises has attracted great attentions. In this work, the Fe-Ce@GSL catalysts have developed by first constructing the MOF/LDH/GO templates with multi-stage mixed growth method followed by calcining the template at high temperature. Fe-Ni-LDH (hydrotalcite) plays the role of linking the metal organic frameworks (Fe-Ce-MOF) and graphene oxides (GO), avoiding the separation of MOFs derivatives and GO sheets during pyrolysis process. Rare-earth metal oxide (CeO2) featuring with abundant oxygen vacancies dispersed on the surface of transition-metal oxide can efficiently improve the stability of catalysts. The optimal Fe7-Ce1@GSL-800 catalysts exhibit excellent ORR/OER performances with the potential gap between ORR (E1/2 = 0.87 V) and OER (EJ=10 = 1.59 V) of 0.720 V. The aqueous Zn-air battery assembled with Fe7-Ce1@GSL-800 catalysts exhibits outstanding performances with high open circuit voltage (1.56 V), large specific capacity (801.1 mAh/g@10 mA.cm-2), and good charge-discharge cycle performances (>500 h). The Fe7-Ce1@GSL-800 based solid-state Zn-air battery also delivers an excellent performance with high specific capacity (791.7 mAh/g@5 mA.cm-2) and long cycle stability (>230 h).

7.
Environ Sci Pollut Res Int ; 28(30): 40756-40770, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33770359

RESUMO

Examining the relationship between seasonal variations in soil respiration and abiotic factors and vegetation indexes is crucial for modeling soil respiration using upscaled remote sensing satellite data. A field experiment including control (CK), warming (WA), straw application (SA), and warming and straw application (WASA) treatments was performed in a winter wheat-soybean rotation cropland on the north shore of the lower reaches of the Yangtze River. Soil respiration, abiotic factors, crop hyperspectral vegetation indexes, leaf area index (LAI), and chlorophyll content (represented as the SPAD value) were measured during the 2018-2020 rotation growing seasons. The results indicated that the mean annual soil respiration was 2.27 ± 0.04, 3.08 ± 0.06, 3.64 ± 0.08, and 3.95 ± 0.20 µmol m-2 s-1 in the CK, WA, SA, and WASA plots, respectively, during the 2-year experimental period. Soil respiration was significantly (P < 0.05) correlated with soil temperature, soil moisture, hyperspectral vegetation indexes, LAI, and SPAD value in all plots. Models that included temperature, moisture, hyperspectral vegetation indexes, LAI, and SPAD value explained 50.5-74.7% of the seasonal variation in soil respiration in the CK, WA, SA, and WASA plots during the 2-year experimental period. A model including the seasonal mean NDVI, DVI, EVI, PRI, and LAI explained 72.4% of the interseasonal and intertreatment variations in seasonal mean soil respiration in the different plots across the four different crop-growing seasons. Our study indicated the potential applicability of hyperspectral vegetation indexes, LAI, and SPAD value to the estimation of soil respiration at a regional scale.


Assuntos
Solo , Triticum , Folhas de Planta , Respiração , Estações do Ano , Microbiologia do Solo , Temperatura
8.
Science ; 359(6372): 206-210, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29326271

RESUMO

We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

9.
Sci Bull (Beijing) ; 63(8): 502-524, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658811

RESUMO

Metal-organic framework (MOF) is a class of inorganic-organic hybrid material assembled periodically with metal ions and organic ligands. MOFs have always been the focuses in a variety of frontier fields owing to the advantageous properties, such as large BET surface areas, tunable porosity and easy-functionalized surface structure. Among the various application areas, catalysis is one of the earliest application fields of MOFs-based materials and is one of the fastest-growing topics. In this review, the main roles of MOFs in heterogeneous organocatalysis have been systematically summarized, including used as support materials (or hosts), independent catalysts, and sacrificial templates. Moreover, the application prospects of MOFs in photocatalysis and electrocatalysis frontiers were also mentioned. Finally, the key issues that should be conquered in future were briefly sketched in the final parts of each item. We hope our perspectives could be beneficial for the readers to better understand these topics and issues, and could also provide a direction for the future exploration of some novel types of MOFs-based nanocatalysts with stable structures and functions for heterogeneous catalysis.

10.
Chem Commun (Camb) ; 51(12): 2331-4, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25562506

RESUMO

A novel non-noble Co@C-N catalytic system has been developed for catalytic transfer hydrogenation reactions. Co@C-N was found to be highly active and selective in the hydrogenation of a variety of unsaturated bonds with isopropanol in the absence of base additives.

11.
Chem Commun (Camb) ; 48(99): 12109-11, 2012 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-23139936

RESUMO

A metal-organic framework with open 2,2'-bipyridine sites can efficiently activate molecular oxygen for selective oxidation of a variety of saturated hydrocarbons with unprecedented activities and selectivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...